ANL-6576

jonne Rational L aboratory

COMPILER INTO GEORGE
ASSEMBI.Y ROUTINE

v by
e R. George
DA% 1
i
W gt a4 AT
MGONKE Me11. a0t 1
muo uauztl m‘,
: l |
PROHEE Y T
mm: #“iu"ﬂi L
IBAHG LAY



LEGAL NOTICE

This report was prepared as an account of Govermment sponsored
work. Neither the United States, nor the Commission, nor any
person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness
of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed
in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus,
method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee
of such contractor, to the extent that such employee or contractor
of the Commission, or employee of such contractor prepares, dis-
seminates, or provides access to, any information pursuant to his
employment or contract with the Commission, or his employment with
such contractor.



ANL-6576

Mathematics and Computers
(TID-4500, 17th Ed.)

AEC Research and
Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois

COMPILER INTO GEORGE ASSEMBLY ROUTINE
by
R. George

Particle Accelerator Division

June 1962

Operated by The University of Chicago
under
Contract W-31-109-eng-38






COMPILER INTO GEORGE ASSEMBLY ROUTINE
by

R. George
Particle Accelerator Division

ABSTRACT

This program of the GEORGE Assembly Routine
(GAR) will accept Fortran-like statements from paper tape
and create a GAR language program on tape. This includes
the needed calls for common subroutines and the reserva-
tions for the named variables and temporaries. The original
statements in Fortran are carried along as remarks.

The GAR language program may then be processed
in the usual way by the GEORGE Assembly Routine, giving
machine-language code.

The level of sophistication of the source language is
roughly equal to that of Fortransit or SALT.

INTRODUCTION

Many computer users are accustomed to writing their own pro-
grams in Fortran language and then having these programs processed to a
particular machine code. The subject of this report is a compilation rou-
tine, known as CIGAR, which does one phase of such processing to
GEORGE machine code.

This routine will accept Fortran-like statements from a 7-channel
punched paper tape and in a single pass create a corresponding GAR lan-
guage program on paper tape. A package of calls for the most commonly
used closed subroutines is always copied into the GAR language program.

As the processing proceeds, a list of variable names and temporaries is
held in the memory and is afterwards transformed into a list of reservations.

It is desirable to be able to make a comparison between the results
of the different processing phases, since this comparison is helpful in de-
bugging the program. To facilitate this, CIGAR will cause the original
statements in Fortran language to be carried along into the remarks col-
umn of the GAR code that is produced.






There are certain restrictions and conventions which must be
observed in programming for this compilation routine. These are dis-
cussed at the appropriate places in this report. In addition, the
programmer should be cognizant of the restrictions and conventions of
GAR, which have been reported elsewhere.

Not all of the abilities of IBM's Fortran are included in CIGAR's
order set, but certain other useful orders have been appended. The re-
sultant source language has a level of sophistication roughly equal to that
of Fortransit or SALT.

PROGRAM STRUCTURE
Comments
Comments may be written anywhere in the program and are copied
exactly into the GAR code as remarks. A comment must begin with a
letter, but is otherwise unrestricted as to content, since it does not result

in any machine code. A comment is terminated by an <E2>.

Arithmetic Statements

Arithmetic statements must be preceded by a 3-character state-
ment number and 6 spaces or by 9 spaces. Wherever a statement number
is used it must be exactly 3 characters, the first of which is a decimal
digit. The leading spaces must be present to enable the compiler to dif-
ferentiate between arithmetic and control statements. Spaces given within
a statement are ignored and may be used freely.

Arithmetic statements are each composed of a left-part and a
right-part, the 2 being separated by an <=>. The entire statement is
terminated by an <E2>.

The left-part may be simple or compound. A simple variable may
be defined as either a single variable or a subscripted array. A compound
left-part is composed of 2 or more simple variables separated by com-
mas; one should not mix single variable and arrays,nor fixed and floating
variables. The left-part must be less than 100 eight-bit characters in
length.

The right-part may be almost any legal Fortran combination of
numbers, variables, binary operations, and functions. One should not mix
fixed and floating quantities arbitrarily since the change of mode is made
only on an explicit call for the change-of-mode functions (FIXF, FLOF).
For the same reason, right-part mode should agree with left-part mode.
The right-part must be less than 250 eight-bit characters in length. It is
terminated by an <E2_.






BINARY OPERATIONS. ..

The following symbols are used to denote the basic binary
operations in CIGAR. There are no unary operations; a construction such
as <=><{-> or <(><+> is illegal. The ordering of this list shows the hier-
archy which is followed during the formula translation.

t exponentiation
* multiplication
/ division
+ addition
- subtraction
One may write (float!float) or (float!fixed) exponentiations. A
floating exponent may be a floating-point number, a floating-point variable,

or a floating arithmetic expression. The fixed-point exponent in an expo-
nentiation is restricted to a fixed-point number or a fixed-point variable.

The remaining operators may be used either for floating-point
arithmetic or for fixed-point arithmetic.

All usages of a particular binary operation symbol at a given
level of bracketing are processed to GAR code before proceeding to the
next symbol at this level. Scanning for symbols is done from left to right,
and from innermost bracket outwards. This means that the sequence

a*b/c*d
would be computed as if it were
(a*b)/(c *ad),

a*b/c/d
((a * b) /c)/a.

but that the sequence

would be computed as

FUNCTIONS. ..

When the search for binary operation symbols is exhausted at
a given level of bracketing, a test is made for an < F > immediately preced-
ing the left parenthesis. If it is found, this tells us that this is a function.
The name which appears to the left of the parenthesis-pair (including
terminal <F >) is the name of the subroutine to be called; the computed
contents of the parenthesis-pair is used as argument to the function
subroutine.






The following functions are built into the running package:

SQRF Floating point Square root

ABSF Floating point Absolute

SINF Floating point Sine - Radians

COSF Floating point Cosine - Radians
EXPF Floating point Exponential - Base e
LOGF Floating point Logarithm - Base e
ATNF Floating point Arc Tangent - Radians
FIXF Floating to Fixed

FLOF Fixed to Floating

SINHF Floating point Hyperbolic Sine
COSHF Floating point Hyperbolic Cosine
ASINF Floating point Arc - Sine

ACOSF Floating point Arc - Cosine

RANDF Floating point Random number (-1 to +1)
CUBRF Floating point Cube root

A programmer may freely use any other name he wishes provided only that
the function subroutine that bears this name has somewhere been inserted,
presumably with the GAR order (discussed infra).

The mode of the arguments to built-in functions is always
floating except for FLOF. The mode of the results of built-in functions is
always floating except for FIXF. In any other case, the mode of the results
is determined by the first letter of the function name. The mode isfloating
if this letter lies in the set <A> to <H> or <O> to <Y>. The mode is fixed
if the letter lies in the set <I> to <N>.

ARRAYS. ..

Arrayed variables must always be defined by a dimension
statement before use. One may do single or double subscripting on either
fixed or floating variables. The subscripts must be fixed-point constants
or fixed-point variables, or a combination of the 2 in double subscripting.
In the evaluation of formulas, the array addresses are computed before
the search for binary operation symbols is begun, and therefore one may
not put arithmetic expressions as subscripts. There is no 3-dimensional
subscripting.

Arrays are stored row by row, forward in memory. An array
name must always be accompanied by subscript information, except in
READ or PUNCH orders, where it must stand alone. In such orders the
entire array is transmitted row by row, moving forward through the
memory.






FLOATING NUMBERS. ..

Within an arithmetic statement, a compiled floating-point
number must be at least 3 characters; there must be exactly one digit to
the left of the decimal point, and one to 8 digits following it. This may
then be followed by the sign of the exponent and a one- or 2-digit exponent.
In addition, one must keep floating-point numbers within the range of
GAR-assemblable numbers.

The sign preceding the leftmost digit will be considered as a
binary arithmetic operation, not as a sign of the number itself.

FIXED NUMBERS. ..

Compiled fixed-point numbers in arithmetic or control state-
ments may be one to 3 characters in length.

The sign preceding the leftmost digit will be considered as an
arithmetic operation, not as a sign of the number itself.

FLOATING VARIABLES. ..

Floating-variable names may have one to 5 characters, the
first of which lies in the set <A> to <H> or <O> to <Y>. One should avoid
names starting with <Z >, since such names are created by the CIGAR pro-
gram. A name starting with <Z> is acceptable either as fixed or floating,
but preferably floating if not otherwise determined. Do not use terminal
<F> for simple variables.

FIXED VARIABLES. ..
Fixed-variable names may have one to 5 characters, the first
of which lies in the set <I> to <N>. Do not use terminal <F> for simple

variables.

Functional Statements

Any arithmetic statement which has simple storage into a single
variable of one to 4 characters may be transformed into a functional state-
ment, which defines a closed subroutine, by appending a terminal <F> to
the storage-variable name. It also remains a legitimate arithmetic
statement.

The statement will be executed and the result stored in the storage
variable whenever the right part of any other arithmetic statement includes
the name of the functional statement. Control statements may not refer to
functional statements.






A functional statement may be placed anywhere in the program, but
there is a warning of possible error if there is a call for its use prior to
its definition.

Procedure Calls

A procedure call must be preceded by a 3-character statement
number and 6 spaces or by 9 spaces. It differs from an arithmetic state-
ment in that no <=> sign appears.’ It is terminated by an <E2”.

The first 5 characters of the procedure call are taken as the name
of the subroutine to be called. This includes internal spaces; therefore,
it is often beneficial to check that the first word of the procedure call is
5 or more characters in length.

The subroutine called by a procedure call must somewhere be
defined within the program. There is no restriction on the content of such
a subroutine, except for assignment of storage variables, if used elsewhere.

Example:
The subroutine: S N e AR
SIGNA E2 -+- E2 F800 E2/+1 El
E2 -+- E2 CBOl1 E2/+1 El
E2 2A0/E2 E2 E4
The call: Tt """ "' 'SIGNAL FROM TYPEWRITER E2

Control Statements

Control statements are preceded by a 3-character statement number
and 3 spaces, or by 6 spaces. Leading spaces must be present to enable
the compiler to recognize the type of statement. Spaces within a statement
are ignored and may be used freely. Control statements are terminated by
an <E2>.

The following is a list of control statements allowed in CIGAR.

Absolute GO TO
Computed GO TO
IF

IF SENSE SWITCH
DO

READ






PUNCH
CONTINUE
PAUSE
STOP
DIMENSION
GAR

LOAD

BCD
MODIFY
BEGIN

ABSOLUTE GO TO. . .

This order may refer toany statement number that is defined
with the program. Wherever a statement number is used it must be exactly
3 characters, the first of which is a decimal digit.

Examples:

GO TO 000
GO TO 532
GO TO 99E

COMPUTED GO TO. . .

This order may refer to any one of a number, n, of statement
numbers, subject to the control of a fixed-point variable as its index. The
value of the index variable may range from 1 to n. If the value of the index
variable is 1, control passes to the first statement number; if the value is
2, control passes to the second statement number, etc.

Examples:

GO TO (126, 132, 185), 1
GO TO (126, 132, 185) 1

IF. . .
Between the parenthesis pair that follows the IF, one may place

a single variable name, or any arithmetic expression that does not include
further parenthesis.






Either fixed or floating expressions may be used.

Following the parenthesis pair there are 3 statement numbers
separated from each other by commas. If the arithmetic expression is
negative, control passes to the first; if zero, to the second; if positive, to
the third.

If the arithmetic expression is fixed point, the test for zero is
made on the leading 12 bits. If the expression is floating point, the test for
zero is made on the high-order exponent of the word, resulting in dis-
crimination at about 107%°,

Examples:

IF (A) 120, 122, 124

IF (I) 130, 131, 132

IF (A-BIG*THING) 291, 206, 300

IF (J + K*L +1 -954) 291, 206, 300

IF SENSE SWITCH...
After this order, we place the identifying number of the switch

to be used, and a comma. Two statement numbers follow separated by a
comma. If the switch is down (on), then control passes to the first address,

otherwise, to the second.

Any of the 15 switches is allowed here, but one should remember
that A thru F are used to designate input and output devices and modes.*

No parenthesis should be used in this order.
Always set B. P. JUMP when running the object program.
Examples:

IF SENSE SWITCH 9, 172, 174
IF SWITCH A, 097, 099

The DO is immediately followed by a 3-character statement
number which we will call the target address. This is immediately followed
by a nonarrayed fixed-point variable which is used by the DO loop as an
index. This is followed by <=>, followed by lower limit, < ,>, upper limit,
<,”, and step size.

*When one uses Package AA.






This order may have at its target address a statement that
belongs to any one of the following classes:
a=b
READ
PUNCH
CONTINUE
PAUSE
GAR
BCD
The index limits and the index step size may be either a fixed-

point decimal number of 1 to 3 digits or a fixed-point variable, not an
arithmetic expression.

If the value 1 is to be used for step size, the final comma and
the index step size may be omitted.

Fortran rules regarding nesting of DO's must be observed. If
one is doing computation with a DO loop, one may not pass control to a sub-
routine if that subroutine has another DO loop within it, as this would
constitute improper nesting.

Examples:
DO 128 1 = IIN, IOUT, ISTEP
PO 128 J =1, 50, 2
DO 128 K =1, J

READ-PUNCH. ..

Reading and punching are under control of sense switches

A B C D E and F at the time of execution of the program.* Switches
B and C together determine the physical unit used for input.*

B __C

0 0 Reader |

0 I  Magnetic Input

1 0 Reader 2

1 1 Keyboard

*When one uses Package AA.

10






11

Switches E and F together determine the physical unit for

output.*
E F
0 0 Anelex
0 1 Magnetic Output
1 0 Paper Tape
1 1 Typewriter

Switches A and D are used as to determine the maximum
number of columns of output information.

A D

0 8 Columns

0 1 5 Columns

1 0 4 Columns

1 1 Suppress E2's

These settings are tested once at the beginning of execution of
the program. If one wishes to make changes during execution one must
both change the switches and cause an excursionto the subroutine ZWITC of
the running package. The best way is to make a Procedure Call such as:

""'ZWITCHES ARE NOW TO BE RESET E2

READ 1 orders require the input of fixed-point decimal
numbers in the format acceptable to GEO-B-8-202, i.e.,*

Sign  number El
The absolute value of the number must be less than 2000.

READ 2 orders require the input of floating-point decimal num-
bers in the format acceptable to GEO-B-1-116, i.e. *

Sign fraction sign of exponent exponent El

The fractional part may be 1 to 10 digits; the exponent may be 1 to 2 digits.
The sign of the number may be <+>, <->, or <sp~ and may be preceded by
a string of spaces, which in turn may be preceded by a letter string. This
is designed so that program output may be read as input provided that the
output of <EZ2> characters was suppressed.

PUNCH 1 orders produce output of fixed-point decimal num-
bers with absolute value less than 2000. This is output via subroutine
GEO-B-6-188.*

*When one uses Package AA.







12

PUNCH 2 orders produce output of floating-point decimal
numbers of the format shown previously. The fractional part of the number
will be 9 digits. The exponent will be 2 digits. This output is via subroutine
GEC-B-2-117.*

Either single items or arrays may be transmitted by READ-
PUNCH orders, but they may not be mixed within a single order. If an
array name is given, the entire array is transmitted.

If a PUNCH order is executed for a list of single items (either
fixed or floating), the items will be arranged in the maximum number of
columns starting at the left of the sheet.*

If a PUNCH order is executed for a list of arrayed variables,
the items of each variable will be put in the maximum number of columns,
restarting at the left of the sheet for each variable.

Examples:

READ 1, I, J, K

PUNCH 1, ILIST, JLIST

READ 2, A, B, C

PUNCH 2, ARRAY, BLOCK, CLIQU

CONTINUE. ..

This is a simple No-op.

Example:

CONTINUE
PAUSE. ..

At compilation time the last four 8-bit characters which are
read following the PAUSE will be transformed into a stored BCD message.
At execution time the machine prints the message and stops. Ready, Con-
tinuous, Go, causes the machine to proceed in sequence from there.

Examples:

PAUSE 0123
PAUSE DBUG
PAUSE 7777

*When one uses Package AA.






13

STOP...

This does the same as PAUSE, except that Ready, Continuous,
and Go have no effect.

Examples:

STOP THRU
STOP DONE

DIMENSION. . .

This order serves to define one or more array variables and
to reserve space for the elements at the array. At the address that bears
the name of the array will be stored a number which describes the array.
The B portion of the word holds the total number of reserved words that
follow, and the A portion of the word holds the number of columns. If the
array is a singly subscripted list, the 2 numbers are equal. This informa-
tion is referred to every time that an address of an array element is
needed; it is used to check whether we have gone beyond the limits of the
array. This order is nonexecutable and gives a stop if execution is
attempted.

Examples:

DIMENSION ARRAY (10, 6), BLOCK (50)
DIMENSION ILIST (15);  JLIST (15)

GAR. ..

This order permits GAR Language code to be inserted in
sequence. The code will be copied exactly down to <E4> which is changed
to <El>.

Examples:

GAR E2
E2 3co/ E2 CF00 E2 / E4

This order permits GAR Language code to be inserted within
an array that has previously been defined. Insertion is begun at the first
reserved word; one should not permit more words than can be contained
in the reserved area. The code will be copied exactly down to <E4 >,
which is changed to <EIl .






Examples:
LOAD ARRAY E2

E2 E2 DEC E2 3.781 El
E2 E2 DEC E2 4.629 EI
E2 E2 DEC E2 7.104 El
E2 E2 DEC E2 8.615 E4

BCD,

This order permits any message, less than 250 characters in
length, which is intended as output at execution time to be written down on
the Fortran coding sheet in the final format. At compilation time, the
message is read to < E4 >, changed to BCD words, and emitted as GAR
code. A call to a message-printing-subroutine is supplied.

At run time, as the control passes in sequence down to this
order, it causes execution of the printing routine and a jump around the
BCD words themselves.

Examples:

BCD E2

E2 sp sp

E2 sp sp

E2 BENDING MAGNET 1176/PAD

E2 MODIFICATION SIX 31 Nov, 61

E2 sp sp

E2 sp sp

E2 ALPHA BETA GAMMA DELTA
E2 sp E4

MODIFY. ..
With this order, one may change arithmetic or control state-
ments in the program at execution time. The following control statements

may easily be changed:

Absolute GO TO
Computed GO TO

14






15

IF

IF SENSE SWITCH
READ

PUNCH
CONTINUE
PAUSE

STOP

GAR

BCD

The modification of DO's and any order which terminates a
DO nest is not recommended.

The order to be modified, the order which follows it in sequence,
and the MODIFY order must each have unique statement numbers. The
statement number which immediately follows the word MODIFY tells which
order is being changed; the second statement number is the number of the
one which follows in sequence. The final thing given in a MODIFY is the
new statement which is to be inserted during execution time. This may be
an arithmetic statement, a procedure call, or a control statement. If it is
either of the first two, 3 leading spaces are required.

Examples:

200 MODIFY 122, 123, GO TO 600
201 MODIFY 122, 123, READ 1,1,J,K, LM
202 MODIFY 165, 166, """ABLE = BAKER

BEGIN. ..

This is always the last compiled statement of a program. It
indicates the starting statement number.

Example:

BEGIN 100






ERROR STOPS

If there is an error in syntax in the Fortran language program, it
will probably be detected by CIGAR during the compilation. The machine
will print one of the following numbers and the word ERROR on the Anelex,
and come to a stop. This list will tell the kind of error that has been
detected.

Error Miscellaneous
1l Error Line cannot be Classified
2 Error Variable Name Unsuitable
3 Error Improper Dimensioning
4 Error Improper DO Statement
5 Error Improper IF Statement
6 Error Variable Name Omitted
7 Error Statement Number Omitted
8 Error Improper Modify Order
9 Error Beyond Limits of List
A Error Improper Read Order
B Error Improper Punch Order
C Error Error in Equation Form
D Error Too many Characters

SUBROUTINES

The following subroutines as they exist on GAR II as of January 1,
1962, are called and modified by the running package or otherwise intro-
duced into the final program.

NAME DESCRIPTION AMD NUMBER
ZAR Floating Arithmetic GEO-D-1-115
ZEX Floating Exponential GEO-E-7-114
VA4 Floating Input GEO-B-1-116
Z0P Floating Output GEO-B-2-117
ZQRT Floating Square Root GEO-E-8-109
Z1COo Floating Sine-Cosine GEO-E-11-168
ZLOG Floating Natural Log GEO-E-13-170
ZART Floating Arc-Tangent GEO-E-15-172
Z10P Fixed Integer Output GEO-B-6-188
ZPll Fixed Integer Input GEO-B-8-202
ZROOT Floating Cube Root GEO-E-19-207






CHECK LIST

The following is a list of ways in which CIGAR language deviates
from IBM 704 Fortran language. The programmer, especially the experi-
enced Fortran programmer, is cautioned to read these restrictions first.
I am indebted to John Reynolds for this list.

(1)
(2)
(3)
(4)
(5)
(6)

(7)
(8)

(9)

(10)

(11)
(12)
(13)
(14)
(15)
(16)

(17)
(18)

(19)

Leading spaces are used to determine the statement type.
Statement numbers must be exactly 3 characters.

Change of mode occurs only on explicit call for its subroutines.
Not all of Fortran's built-in functions are included.

There is no unary <+> or <->.

The hierarchy of operations does not place multiplication and
division on the same level (nor addition and subtraction).

Certain exponentiations are not allowed.

The calls for Fortran's standard functions must be made with
the names as listed on page 5.

Arrays are stored in increasing addresses in this way:
an, a, a, az, a2

In READ or PUNCH orders, one gives only the name of an
array to transmit the entire array.

There is no 3-dimensional subscripting.
Subscripts may not be arithmetic expressions.

Floating-point numbers and fixed-point numbers which are com-
piled into arithmetic expressions are severely restricted as to
format.

Variable names may be one to 5 characters in length, and should
not begin with <Z>.

Not all of Fortran's control statements are allowed. (See
pages 7 - 8).

The arithmetic expression in an IF statement may not itself
contain parentheses.

There is no parenthesis in the IF SENSE SWITCH order.

The limits and step size in a DO order may not be arithmetic
expressions.

Nesting rules for DO nests are somewhat more stringent.

iy






-

(20)

(21)

(22)
(23)

There is no FORMAT order. There is one built-in format
for fixed-point numbers and one for floating-point numbers.

One may not mix fixed- and floating-variable names, nor single-
and arrayed-variable names, within a single READ or PUNCH
order.

There is no looping within a READ or PUNCH order.

The final statement of a program must be a BEGIN order.

18






W




